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Overview

Problem

e Distinguishing between suicide and depression 1s a challenging and
unaddressed task

e Web-scraped data allows for increased data, enabling the use of DNNs

e Data for this task inherently has noisy labels, requiring label correction

Solution: SDCNL

e Contributions:
o Neural Network (NN) sentiment analysis for depression vs suicidal
ideation classification
o Novel unsupervised, clustering-based label correction process
o Extensive experimentation, ablation on multiple datasets
e Paper: https://arxiv.org/abs/2102.09427
e Code: https://github.com/ayaanzhaque/SDCNL

Embedding Models & Classifiers

e We translate the raw text to numerical representations using embedding
models. We classify the text by depression or suicide using classifiers.
e Embedding Models:
o BERT — State of the Art, bidirectionally trained transformer
o Sentence-BERT — Extension of BERT optimized for longer inputs
o Google Universal Sentence Encoder (GUSE) — transformer optimized
for greater-than-word length text
e Deep Classifiers: CNN, BILSTM, GRU
e C(lassical Classifiers: LogReg, MNB, SVM

Datasets

Primary Dataset:

e Used for suicide and depression classifciation

e Reddit-based dataset web-scraped from subreddits r/SuicideWatch and
r/Depression

e Posts from r/SuicideWatch labeled as suicidal; posts from r/Depression
labeled as depressed

Reddit Suicide C-SSRS dataset:

e 500 Reddit posts from r/Depression that are clinically labeled by
psychologists according to the C-SSR Scale (severity of depression)

IMDB Dataset:

e Baseline large movie dataset for label correction validation

Conclusion and Ethics

e We present a novel method for deep neural network classification of
depressive sentiment vs suicidal ideation with unsupervised noisy label
correction

e An applied setting would be as second opinions and a supplementary tool
for therapists

e The ethical concern with our research are false negative and positive
predictions in eventual applications.
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e Data i1s web scraped from Reddit for large amounts of samples

e Data 1s pre-processed and fed to a state-of-the-art embedding model

e To remove noise, embeddings are passed to dimensionality reducing
algorithms and then a clustering algorithm to create new labels

e Clustering labels are used to correct the noisy labels based on a
thresholding scheme

e Embeddings and corrected labels are passed to a classifier to distinguish
between suicidal and depressive sentiment

Label Correction

e “Curse of Dimensionality”: Word embeddings have many features, but for
clustering algorithms, dimensionality reduction methods are required

e Unsupervised Clustering: The reduced embeddings are fed to an
unsupervised clustering algorithm and new labels are predicted

e Correction Scheme: Labels are corrected using a thresholding scheme: 1f
the confidence of the clustering algorithm is above the threshold t, then the
label 1s swapped to the clustering label, otherwise it 1s preserved

e The underlying feature distributions of each class are very similar, making
clustering a challenging task, as shown below

e This graphic uses BERT embeddings
and PCA reduction to 2 dimensions
e The graphic shows the difficulty of the
clustering task
o There 1s little differentiation
between the clusters
o The clusters heavily overlap
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Sensitivity

Clustering Performance

e QOur noise correction method 1s able to consistently remove > 50% of
injected noise while remaining below a 10% false-correction rate

e The performance does not degrade heavily at higher noise percentages,
which is challenging to achieve
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Classification Performance after Label Correction

e We compare the classification accuracy of our model on uncorrected labels
versus labels corrected using the label correction method.

Classification improved
by 10-20% for every
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Classification Performance
e We found that a combination of GUSE with a Dense NN was the best for
our proposed task of suicide vs. depression classification

ROC curves of
performance of top 4
models with label
correction (red) against
the same models without
label correction (blue).
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https://arxiv.org/abs/2102.09427
https://github.com/ayaanzhaque/SDCNL

